9 research outputs found

    Evaluation of Wirelessly Transmitted Video Quality Using a Modular Fuzzy Logic System

    Get PDF
    Video transmission over wireless computer networks is increasingly popular as new applications emerge and wireless networks become more widespread and reliable. An ability to quantify the quality of a video transmitted using a wireless computer network is important for determining network performance and its improvement. The process requires analysing the images making up the video from the point of view of noise and associated distortion as well as traffic parameters represented by packet delay, jitter and loss. In this study a modular fuzzy logic based system was developed to quantify the quality of video transmission over a wireless computer network. Peak signal to noise ratio, structural similarity index and image difference were used to represent the user's quality of experience (QoE) while packet delay, jitter and percentage packet loss ratio were used to represent traffic related quality of service (QoS). An overall measure of the video quality was obtained by combining QoE and QoS values. Systematic sampling was used to reduce the number of images processed and a novel scheme was devised whereby the images were partitioned to more sensitively localize distortions. To further validate the developed system, a subjective test involving 25 participants graded the quality of the received video. The image partitioning significantly improved the video quality evaluation. The subjective test results correlated with the developed fuzzy logic approach. The video quality assessment developed in this study was compared against a method that uses spatial efficient entropic differencing and consistent results were observed. The study indicated that the developed fuzzy logic approaches could accurately determine the quality of a wirelessly transmitted video

    Adaptive sampling technique using regression modelling and fuzzy inference system for network traffic

    Get PDF
    Electronic-health relies on extensive computer networks to facilitate access and to communicate various types of information in the form of data packets. To examine the effectiveness of these networks, the traffic parameters need to be analysed. Due to quantity of packets, examining their transmission parameters individually is not practical, especially when performed in real time. Sampling allows a subset of packets that accurately represents the original traffic to be chosen. In this study an adaptive sampling method based on regression and fuzzy inference system was developed. It dynamically updates the sampling by responding to the traffic changes. Its performance was found to be superior to the conventional non-adaptive sampling methods

    Quality of Service Evaluation and Assessment Methods in Wireless Networks

    Get PDF
    Wireless networks are capable of facilitating a reliable multimedia communication. The ease they can be deployed is ideal for disaster management. The Quality of Service (QoS) for these networks is critical to their effectiveness. Evaluation of QoS in wireless networks provides information that supports their management. QoS evaluation can be performed in multiple ways and indicates how well applications are delivered. In this work, fuzzy c-means clustering (FCM) and Kohonen unsupervised neural networks were compared for their abilities to differentiate between Good, Average and Poor QoS for voice over IP (VoIP) traffic. Fuzzy inference system (FIS), linear regression and multilayer perceptron (MLP) were evaluated to quantify QoS for VoIP. FCM and Kohonen successfully classified VoIP traffic into three types representing Low, Medium, and High QoS. FIS, regression model and MLP combined the QoS parameters (i.e. delay, jitter, and percentage packet loss ratio) with information from the generated clusters and indicated the overall QoS

    Adaptive sampling for QoS traffic parameters using fuzzy system and regression model

    Get PDF
    Quality of service evaluation of wired and wireless networks for multimedia communication requires transmission parameters of packets making up the traffic through the medium to be analysed. Sampling methods play an important role in this process. Sampling provides a representative subset of the traffic thus reducing the time and resources needed for packet analysis. In an adaptive sampling, unlike fixed rate sampling, the sample rate changes over time in accordance with transmission rate or other traffic characteristics and thus could be more optimal than fixed parameter sampling. In this study an adaptive sampling technique that combined regression modelling and a fuzzy inference system was developed. The method adaptively determined the optimum number of packets to be selected by considering the changes in the traffic transmission characteristics. The method's operation was assessed using a computer network simulated in the NS-2 package. The adaptive sampling evaluated against a number of non-adaptive sampling methods gave an improved performance

    Adaptive sampling technique using regression modelling and fuzzy inference system for network traffic

    Get PDF
    Electronic-health relies on extensive computer networks to facilitate access and to communicate various types of information in the form of data packets. To examine the effectiveness of these networks, the traffic parameters need to be analysed. Due to quantity of packets, examining their transmission parameters individually is not practical, especially when performed in real time. Sampling allows a subset of packets that accurately represents the original traffic to be chosen. In this study an adaptive sampling method based on regression and fuzzy inference system was developed. It dynamically updates the sampling by responding to the traffic changes. Its performance was found to be superior to the conventional non-adaptive sampling methods

    Hybrid computer network quality of service and experience: development and evaluation

    No full text
    Multimedia transmission over wired and wireless (hybrid) networks is increasingly needed as new services emerge and hybrid networks become more diverse and reliable. Quantifying quality of multimedia applications transmitted over hybrid networks is valuable for measuring network performance and its optimisation. For video, the process involves examining the images that make up the video, by quantifying distortion, noise, and complementing them with traffic parameters characterised by packet delay, delay variation (jitter) and percentage of packet loss ratio (%PLR). Processing all received packets to evaluate the quality of received application is computationally intensive. The study developed a new multi-input adaptive sampling method that allowed a subset of transmitted packets to be chosen according to variations in three synchronised traffic parameters inputs. The method integrated fuzzy logic and regression modelling of traffic parameters and adaptively adjusted the number of packets selected for processing. Statistical and neural networks methods were developed to evaluate quality of service (QoS) for video streaming and Voice over Internet Protocol (VoIP) transmitted over hybrid networks. The traffic parameters for QoS evaluations were delay, jitter and %PLR. The work involved, Bayesian classification and probabilistic neural network (PNN) based methods to process traffic parameters. QoS. This allocation conformed to the International Telecommunication Union (ITU) recommendations. Overall, the performance of Bayesian method was better than PNN when determining QoS for VoIP. In addition, the developed methods were successfully used in practical tests to analyse QoS in the wireless standards IEEE 802.11ac and IEEE 802.11n. QoS reflects provides information that indicates the extent the traffic parameters for an application are within the expected bounds. However, the user's perception of the received application is also relevant. This evaluation can be performed through quality of experience (QoE) analysis. For video, QoE considers issues such as image distortion and noise that in this study were quantified by structural similarity index measure (SSIM), peak signal to noise ratio (PSNR) and image difference (ID). A modular fuzzy logic-based system that individually determined QoS and QoE, then combined them to determine the overall quality of a wirelessly transmitted video was developed. The performance of the devised video quality evaluation system was compared against the subjective evaluation performed by 25 participants (i.e. mean opinion scores) and consistent results were observed. A further evaluation of the video quality evaluation system was carried by comparing its results against a recently reported video quality assessment method known as the spatial efficient entropic variation quality assessment. Again, comparable results were obtained between the two methods. The QoE evaluations were carried out both in a network laboratory and over an institutional network. The study resulted in development a multi-input adaptive sampling method and artificial intelligence and statistical based QoS and QoE evaluation methods. The proposed schemes improved the QoS and QoE assessments for multimedia applications. The devised adaptive sampling model in comparison with random, stratified and systematic non-adaptive sampling methods was more effective as it represented the traffic more precisely. The developed two probabilistic QoS methods showed consistency in their classifications. Both models successfully classified the received VoIP packets into their corresponding low, medium, and high QoS types. Furthermore, QoE with image partitioning approach has improved QoE evaluation as partitioned image approach provided more accurate results than full image approach. The proposed integration approach of three multimedia parameters SSIM, PSNR and ID improved accuracy of overall QoE assessments compared to single parameter approaches

    Adaptive sampling technique using regression modelling and fuzzy inference system for network traffic

    No full text
    Electronic-health relies on extensive computer networks to facilitate access and to communicate various types of information in the form of data packets. To examine the effectiveness of these networks, the traffic parameters need to be analysed. Due to quantity of packets, examining their transmission parameters individually is not practical, especially when performed in real time. Sampling allows a subset of packets that accurately represents the original traffic to be chosen. In this study an adaptive sampling method based on regression and fuzzy inference system was developed. It dynamically updates the sampling by responding to the traffic changes. Its performance was found to be superior to the conventional non-adaptive sampling methods

    An empirical literature analysis of adsorbent performance for methylene blue uptake from aqueous media

    No full text

    SARS-CoV-2 vaccination modelling for safe surgery to save lives: data from an international prospective cohort study

    No full text
    Background: Preoperative SARS-CoV-2 vaccination could support safer elective surgery. Vaccine numbers are limited so this study aimed to inform their prioritization by modelling. Methods: The primary outcome was the number needed to vaccinate (NNV) to prevent one COVID-19-related death in 1 year. NNVs were based on postoperative SARS-CoV-2 rates and mortality in an international cohort study (surgical patients), and community SARS-CoV-2 incidence and case fatality data (general population). NNV estimates were stratified by age (18-49, 50-69, 70 or more years) and type of surgery. Best- and worst-case scenarios were used to describe uncertainty. Results: NNVs were more favourable in surgical patients than the general population. The most favourable NNVs were in patients aged 70 years or more needing cancer surgery (351; best case 196, worst case 816) or non-cancer surgery (733; best case 407, worst case 1664). Both exceeded the NNV in the general population (1840; best case 1196, worst case 3066). NNVs for surgical patients remained favourable at a range of SARS-CoV-2 incidence rates in sensitivity analysis modelling. Globally, prioritizing preoperative vaccination of patients needing elective surgery ahead of the general population could prevent an additional 58 687 (best case 115 007, worst case 20 177) COVID-19-related deaths in 1 year. Conclusion: As global roll out of SARS-CoV-2 vaccination proceeds, patients needing elective surgery should be prioritized ahead of the general population
    corecore